1292

Synthesis of 2,3-Di-O-palmitoyl- α , α -trehalose via a Novel Tri-protected Trehalose Intermediate

Paul A. Wallace and David E. Minnikin*

Department of Chemistry, University of Newcastle, Newcastle upon Tyne, UK NE1 7RU

2',3';4,6;4',6'-Tri-O-cyclohexylidene- α , α -trehalose **4** is prepared from α , α -trehalose, regioselectively acylated at C-2 with palmitate; after further acylation with palmitate at C-3, deacetalisation gives 2,3-di-O-palmitoyl- α , α -trehalose **2**.

Pathogenic mycobacteria produce a range of complex cell surface glycopeptidolipid, diacylglycosylphenolphthiocerol and lipooligosaccharide lipid antigens.¹ Recently, relatively simple 2,3-di-O-acyl- α , α -trehalose mycobacterial antigens have been characterised,²⁻⁴ as exemplified by the main component 1 from Mycobacterium tuberculosis.² The chemical synthesis of these lipids offers the possibility of economically producing large amounts of antigens for use in rapid serodiagnosis,⁵ particularly in developing countries where the combination of tuberculosis and AIDS is an increasing problem. A synthesis of 2,3-di-O-acyl- α , α -trehaloses has been reported recently,6 involving selective acylation of the 2,3-Odibutylstannylene derivative of 4,6;4',6'-di-O-benzylidene- α, α -trehalose, protection of the monoesters by cyclising silvlation with 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane, further acylation and deprotection. In this communication, we report the efficient synthesis of 2,3-di-O-palmitoyl- α , α -trehalose 2 via the regioselective acylation of a novel asymmetrically protected trehalose.

Following a previous glucose protection strategy,7 anhydrous trehalose, in dry dimethylformamide, was heated under reflux and reduced pressure (water pump) for 4 h with 8 molar equivalents of 1,1-dimethoxycyclohexane in the presence of toluene-4-sulfonic acid. Reaction of the crude product with acetic anhydride in pyridine gave a mixture of acetates which were resolved by flash silica gel chromatography to give the main tri-protected product [3, 42%, TLC, R_f 0.63 in ethyl acetate-light petroleum (b.p. 40-60 °C) (1:1)], accompanied by tetra-protected $(3\%, R_f 0.86)$, di-protected $(39\%, R_f 0.38)$ and mono-protected (6%, $R_f 0.25$) derivatives. The structure of the key product 3, $[\alpha]_{D}^{20}$ + 108 (c 1, CHCl₃), m.p. 90-94 °C, was confirmed by the combination of electron impact mass spectrometry [found M⁺, m/z 666; C₃₅H₅₀O₁₃ requires 666.76] and NMR spectroscopy (1H, 200 MHz; 13C, 50.3 MHz; CDCl₃). The NMR spectra showed distinctive proton signals at $\delta_{\rm H}$ 5.27 (1 H, $J_{1,2}$ 3.8 Hz, 1-H) and 5.32 (1 H,

 $J_{1',2'}$ 3.0 Hz, 1'-H) and carbon signals at $\delta_{\rm C}$ 94.09 (1 C, C-1) and 93.39 (1 C, C-1') and only two CH₃CO₂- signals ($\delta_{\rm H}$ 2.03 and 2.09), as required for the asymmetric substitution pattern. Deacylation of **3** with 3% NaOMe in chloroform-methanol (1:1) and flash chromatography gave **4** (62%, m.p. 138– 140 °C), $[\alpha]_{\rm D}^{22}$ + 112 (c 1, CHCl₃).

Treatment of 4 with palmitic acid (1 molar equiv.), dicyclohexylcarbodiimide (DCC) (1.2 molar equiv.) and 4-dimethylaminopyridine (DMAP) (1.1 molar equiv.) in dry dichloromethane,⁸ in the presence of activated 4 Å molecular sieves, gave essentially a single component on TLC; purification by flash chromatography yielded 5 (75%, syrup) (found M⁺ m/z 821; C₄₆H₄₉O₆ requires 821.1); $[\alpha]_D^{20}$ + 80.4 (*c* 1, CHCl₃). The regioselective esterification at C-2 was confirmed by NMR spectroscopy with the expected signal for 2-H at δ_H 4.75 (1 H, dd, $J_{1.2}$ 3.7, $J_{2.3}$ 9.6 Hz) and the absence of an

expected triplet for 3-H at about $\delta_{\rm H}$ 5.35. The ¹³C spectrum showed only one set of signals for the unit -CO₂CH- ($\delta_{\rm C}$ 71.39, C-2; 173.44, carbonyl).

Further esterification of **5** with palmitic acid (2.0 molar equiv.), DCC (2.4 molar equiv.) and DMAP (2.2 molar equiv.) gave, after flash chromatography, **6** (68%, syrup), $[\alpha]_D^{21} + 51.6$ (*c* 2, CHCl₃); $\delta_H 4.94$ (1 H, dd, $J_{1,2} 4.0$, $J_{2,3} 9.9$ Hz, 2-H), 5.09 (1 H, d, $J_{1,2} 3.0$ Hz, 1'-H), 5.26 (1 H, dd, $J_{1,2} 3.7$ Hz, 1-H), 5.46 (1 H, t, $J_{2,3} 9.9$ Hz, 3-H); $\delta_C 170.49$ (1 C, carbonyl of ester at C-2), 169.53 (1 C, carbonyl of ester at C-3).

The cyclohexylidene protection groups of 6 were removed by treatment with 10% aqueous HCl-tetrahydrofuran (2:1) at 20 °C for 16 h. Flash chromatography, with chloroformmethanol (100% CHCl₃ to 3:1 to 2:1 to 1:1 gradient), of the product gave 2,3-di-O-palmitoyl- α , α -trehalose 2 (31%, m.p. 132–134 °C), [α]_D²² + 43.4 (c 1, CHCl₃); δ _H 44.84 (1 H, dd, $J_{1,2}$ 3.3, $J_{2,3}$ 9.1 Hz, 2-H), 5.08 (1 H, d, $J_{1,2}$ 2.2 Hz, 1'-H), 5.23 (1 H, d, $J_{1,2}$ 3.3 Hz, 1-H), 5.37 (1 H, t, $J_{2,3}$ 9.0 Hz, 3-H); δ _C 171.5 (1 C, carbonyl of ester at C-3), 178.8 (1 C, carbonyl of ester at C-2). The natural lipid antigen isolated from *M. tuberculosis*² has δ _H 4.83 (2-H), 5.05 (1'-H), 5.25 (1-H), 5.40 (3-H); δ _C 173.8 (carbonyl of ester at C-3), 177.8 (carbonyl of ester at C-2). The synthetic glycolipid is also cochromatographed on TLC with natural diacyl trehalose glycolipid antigens from *M. tuberculosis*² and *Mycobacterium fortuitum.*⁴

Efficient syntheses of both diacylated (2,6) and 2-acylated (5) trehalose derivatives are described above. The regioselective acylation is in accord with the previous synthesis of 2^6 but it is achieved without the necessity of activation as a 2,3-O-dibutylstannylene derivative and subsequent protection of the 2',3' positions with 1,3-dichloro-1,1,3,3-tetraisopropyl-disiloxane. The present synthesis involves the use of inexpensive reagents and the synthesis of 2 can be cut to four steps

(trehalose $\rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 2$) if the acetylation-deacylation step is omitted. This would require that the initial purification is of compound 4, which is quite satisfactory since the true identity of 4 has been established by preparation and characterisation of its diacetate 3. The synthesis of the native glycolipid antigens 1 from *M. tuberculosis*² will require the prior preparation of the dimethyl branched fatty acid and sequential esterification. The way is now open for the efficient production of a range of 2,3-di-*O*-acyl- α , α -trehaloses and thereby the determination of the precise epitopes of these important glycolipid antigens.

N. A. Hughes is thanked for helpful discussions and the SERC for a QUOTA studentship to P. A. W.

Received, 24th May 1993; Com. 3/02969G

References

- 1 P. J. Brennan, in *Microbial Lipids*, ed. C. Ratledge and S. G. Wilkinson, Academic Press, London, 1988, vol. 1, p. 203.
- 2 G. S. Besra, R. C. Bolton, M. R. McNeil, M. Ridell, K. E. Simpson, J. Glushka, H. van Halbeek, P. J. Brennan and D. E. Minnikin, *Biochemistry*, 1992, 31, 9832.
- 3 N. Gautier, L. M. López Marín, M-A. Lanéelle and M. Daffé, FEMS Microbiol. Lett., 1992, 98, 81.
- 4 M. E. Hamid, J. L. Fraser, P. A. Wallace, G. S. Besra, M. Goodfellow, D. E. Minnikin and M. Ridell, *Lett. Appl. Microbiol.*, 1993, 16, 132.
- 5 M. Ridell, G. Wallerström, D. E. Minnikin, R. C. Bolton and M. Magnusson, *Tubercle and Lung Disease*, 1992, **73**, 101.
- 6 H. H. Baer and X. Wu, Carbohydr. Res., 1993, 238, 215.
- 7 F. H. Bisset, M. E. Evans and F. W. Parrish, Carbohydr. Res., 1967, 5, 184.
- 8 B. Neises and W. Steglich, Angew. Chem., Int. Ed. Engl., 1978, 17, 522.